

(Affiliated to Visvesvaraya Technological University, Belagavi & Approved by AICTE, New Delhi.)

DEPARTMENT OF BIOTECHNOLOGY

INTER	VAL ASS	SESTME	NT PAPER
and the same and the same	1222 222		TA AZZA LIZZ

INTERNAL TEST: I	ACADEMIC YEAR: ODD/2017-2018	8
SUB : PLANT BIOTECHNOLOGY	SUB-CODE: 15BT73	SEM & SECTION : VII
DATE: 20/9/2018	TIME: 9-10:30AM DUR: 1.5 H	MAX MARKS: 30

Answer any two full questions choosing one from each Module (Each full question carries 15 marks)

Main Question	Question Question		Marks	Bloom's Taxonomy Level	Course Outcomes Mapped
\		Module		*2	2, 2
	a	Illustrate the process of protoplast culture	7.5	L1, L 2, L3	CO - 1
1	b	Give an account of the basic constituents of plant tissue culture media. Add a note on the enrichment of the media by adjuvents.	7.5	L1, L 2, L3	CO - 1
-:		OR	/		
2	a.	How haploid plants are produced by Androgenesis culture? Note on its applications.	7.5	L1, L 2, L3	CO-1
	b	Explain the process by which plant materials can be stored for longer duration	7.5	L1, L 2, L3	CO - 1
`		Module			
3	a	Describe the techniques used for gene transfer in plant any two method	7.5	L1, L2, L3	CC-1
-	b	Explain the Types of plant vectors and their use	7.5	L1, L 2, L3	.co-1
-		OR	·	****	
7.43	a	Describe the Agrobacterium mediated transformation for creation of transgenic tlant	7.5	L1, L 2, L3	CO - 1
4	ь	What are somatic embryes? Explain the profession for large scale production of somatic embryos?	·: 7:5	L1, L 2, L3	co-1
	1 c 0 m v			t .	1

co: 1. State the basic concepts of Plant tissue culture and their applications, media pheparation tools of genetic engineeing in producing transgenic plant

SAPTHAGIRI Cottons of Environmentor

DEPARTMENT OF BIOTECHNOLOGY INTERNAL ASSESTMENT PAPER

INTERNAL TEST: II	ACADEMIC YEAR: EVEN /2018-2019				
SUB: ENZYME TECHNOLOGY AND BIOTRANSFORMATION	SUB-CODE: 15BT63		SEM & SECTION: V		
DATE: 16/4/18	TIME: 10.45 - 12:15 AM	DUR: 1Hr 30 min	MAX MARKS: 30		
STAFF-INCHARGE: Prof S	НОВНА G	9			

Answer any two full questions choosing one from each Module (Each full question carries 15 marks)

Main Question	Sub Question	Full Question	Marks	Bloom's Taxonomy Level	Course Outcomes Mapped
	т	Module		1 7 1	wanhher
1	a	How are L-amino acids and aspartame prepared in bioreactor using immobilized technique?	7.5	L2, L3, L4	CO - 3
-	b	How the optimization can be carried out for maximum enzyme activity (any two factor).	7.5	L2, L3, L4	CO-3
		OR			<u> </u>
2	a	With two examples explain Enzyme and isoenzyme measurement methods	7.5	L2, L3, L4	CO - 3
2	b	Describe enzyme immobilization of covalent method and crosslinking method	7.5	L2, L3, L4	CO - 3
		Module			
3	а	Explain the method involved in production of glucose and maltose syrups from starch using hydrolytic enzymes.	7.5	L1, L2, L3	CO 5
	b	Explain the role of enzyme in detergents	7.5	L1, L2, L3	CO 5
	-	OR			
4	a	Describe the role of enzymes in leather industry	7.5	L1, L2, L3	CO 5
	b	Explain role of protease in food industry	7.5	L1, L2, L3	CO 5

DIMUTHINIA TO TOTION OF THE TRIVENIA

(Affiliated to Visvesvaraya Technological University, Belagavi & Approved by AICTE, New Delhi.)

DEPARTMENT OF BIOTECHNOLOGY INTERNAL ASSESTMENT PAPER

ACADEMIC YEAR: EVEN /2018-2019			
SUB-CODE: 15BT63		SEM & SECTION: V	
TIME: 10.45 - 12:15 AM	DUR: 1Hr 30 min	MAX MARKS: 30	
	SUB-CODE : 15B TIME : 10.45 -	SUB-CODE : 15BT63 TIME : 10.45 - DUR : 1Hr 30 min	

Answer any two full questions choosing one from each Module (Each full question carries 15 marks)

Main Question	Sub Question	Full Question	Marks	Bloom's Taxonomy Level	Course Outcomes Mapped
	-	Module			-0
	a	Describe catalytic antibodies	7.5	L2	CO - 4
1	b	Explain the synthesis of enzyme using steroid as a template	7.5	L1	CO - 4
		OR			
	а	Note on extremozymes	7.5	L2	CO - 4
2	b	Describe biocatalysts from extreme Thermophilic microorganisms	7.5	L2	CO - 4
		Module			
3	a	Describe the role of microorganism in transformation of steriods	7.5	L2	CO - 4
	b	Explain Host Guest Complexation chemistry	7.5	L2	CO - 4
	7.	OR			
4	а	Explain Peptide Synthesis by enzymatic approach	7.5	L1	CO - 4
4	· b	Note on artificial enzymes	7.5	Ll	CO - 4

CO - 4 To Comprehend the applications of nonconventional media in enzyme catalysis and design the methods for the creation of novel enzymes and biotransformation of drugs

USN	1	SG				

SAPTHAGIRI COLLEGE OF ENGINEERING

(Affiliated to Visvesvaraya Technological University, Belagavi & Approved by AICTE, New Delhi.)

DEPARTMENT OF BIOTECHNOLOGY INTERNAL ASSESTMENT PAPER

INTERNAL TEST: I	ACADEMIC YE	ACADEMIC YEAR: EVEN /2018-2019			
SUB : CLINICAL BIOCHEMISTRY	SUB-CODE: 17H	SUB-CODE: 17BT46			
DATE: 13-3-19	TIME: 1:00- 2:30pm	DUR: 1Hr 30 min	MAX MARKS: 30		

Answer any two full questions choosing one from each Module (Each full question carries 15 marks)

Main Question	Sub Question	Full Question		Bloom's Taxonomy Level	Course Outcomes Mapped				
	Module -1								
1	a	Diagnostic tests for cardiovascular disease based on lipid profile	7.5	L2	CO-1				
	b	Write a note on hypoglycemia.	7.5	Ll	CO-1				
	OR								
2	a.	How are serum lipoproteins classified by ultracentrifugation. Give their functions.	7.5	L2	CO-1				
	b	Lab findings in Galactosemia	7.5	L2	CO-1				
	d	Module -2	*						
	a	Explain Multiple sclerosis	7.5	L2	CO-1				
3	b	What are the features of a Normal Glucose Tolerance Curve?	7.5	L1	CO-1				
777	J	OR							
	а	Explain one lipid storage disorders	7.5	L2	CO-1				
4	b	Describe the role of the clinical laboratory in the diagnosis and management of diabetes mellitus. What are the biochemical causes of the chronic complications seen in the condition?		L2	CO-1				

CO: 1 Discuss the biochemistry and pathophysiology associated with various disorders of metabolism and inborn errors of metabolism.

Principal

DUT THURSTING CAPPEAR OF BUILDING TO

(Affiliated to Visvesvaraya Technological University, Belagavi & Approved by AICTE, New Delhi.)

DEPARTMENT OF BIOTECHNOLOGY

INTERNAL ASSESTMENT PAPER

INTERNAL TEST: II	ACADEMIC YEAR: ODD/2017-2018			
SUB : PLANT BIOTECHNOLOGY	SUB-CODE: 15BT	SEM & SECTION : VII		
DATE: 23/10/2018 DAY: TUESDAY	TIME: 9.00AM - 10.30 AM AM	DUR : 1.5 Hr	MAX MARKS: 30	

Answer any two full questions choosing one from each Module (Each full question carries 15 marks)

Main Question	Sub Question	Full Question	Marks	Bloom's Taxonomy Level	Course Outcomes Mapped
		Module			
1	a	Construct a fungal resistance transgenic plant	7.5	L 2, L3, L4	CO – 2
1	b	Explain the bt gene with mechanism of action	7.5	L 2, L3, L4	CO – 2
		OR			
	a.	Construct a drought and salinity resistance transgenic plant	7.5	L 2, L3, L4	CO – 2
2	b	Explain Non-bt like protease inhibitor and amylase inhibitor	7.5	L 2, L3, L4	CO – 2
		Module	-		
3	a	Describe the steps involved in mass production of cyanobacteria as Biofertilizers	7.5	L1, L 2, L3	CO – 5
3	b	Discuss the process involved in production of alginate from macro algae	7.5	L1, L 2, L3	CO 5
		OR			
- 1	a	Describe the steps involved in mass production of SCP	7.5	L1, L 2, L3	CO – 5
4	b	Discuss the process involved in production of agar-agar from macro algae	7.5	L1, L 2, L3	CO – 5

CO –2: State the applications of plant genetic engineering in production transgenic plants to with stand abiotic and biotic stress and discuss ethical and social issues regarding genetically-modified crops

CO-5: Acquaint with principles, technical requirement, scientific and commercial applications in algal technologies with suitable examples

		-			
USN	SG				

SAPTHAGIRI COLLEGE OF ENGINEERING

(Affiliated to Visvesvaraya Technological University, Belagavi & Approved by AICTE, New Delhi.)

DEPARTMENT OF BIOTECHNOLOGY INTERNAL ASSESTMENT PAPER

INTERNAL TEST: III	ACADEMIC YEAR: ODD/2017	-2018
SUB: PLANT BIOTECHNOLOGY	SUB-CODE: 15BT73	SEM & SECTION : VII
DATE: 23/11/2018 THRUSDAY	TIME: 9:00-10:30 DUR: 1.5 H	MAX MARKS: 30

Answer any two full questions choosing one from each Module (Each full question carries 15 marks)

Main Question	Sub Question	Full Question		Bloom's Taxonomy Level	Course Outcomes Mapped					
Module -III										
a 1		Explain herbicide resistance with respect to glyphosate	7.5	L2	CO - 3					
1	b	Define Molecular farming? Add a note on production of industrial enzyme?	7.5	L 2	CO - 3					
	<u> </u>	OR								
2 a.	a.	Illustrate the production of polyhydroxy butyrate?	7.5	L3	CO - 3					
	b	Discuss the production of biodegradable plastic?	7.5	L3	CO - 3					
		Module- IV	*							
3 a	a	Explain mechanism of signal transduction in plant?	7.5	L2	CO - 4					
	b	Describe two complementary System?	7.5	L3	CO - 4					
		OR								
4	a	Discuss on molecular mechanism of giberllin?	7.5	L3	CO - 4					
	b	Explain genetic engineering of nif genes?	7.5	L2	CO - 4					

CO-3: Describe the role, importance & applications of tissue culture in molecular farming

CO-4: Explain the mechanism of signal transduction and nitrogen fixation in plants