	U	S	N									
--	---	---	---	--	--	--	--	--	--	--	--	--

Department of Physics

Sapthagiri College of Engineering Internal Assessment - I

Subject: Engineering Physics Semester: 2(ECE/ME/BT/CV)

Duration: 1½ hour (Time: 10.45am to 12.15pm)

Subject Code: 18PHY22

Max Marks: 30 Date: 16/04/2019

NOTE: 1. Answer any two full questions, choosing one from each module.

Quest numl	RESOVERING RESIDENCE	Questions	Marks	BLT	co's
		Module – 1 (Oscillations and Waves)			
1.	a)	What are forced oscillations? Obtain an expression for amplitude and phase of a body undergoing forced vibrations.	6	L1 L2	
	b)	What are shock waves? Mention any four applications of shock waves.	5	L1	CO1
	c)	A mass of 0.5 kg causes an extension of 0.03 m in a spring and the system is set for oscillations. Find i) The force constant for the spring ii) angular frequency and iii) Time Period of the resulting oscillations.	4	L3	
		OR			
2.	a)	What is Mach number? Describe the construction and working of Reddy shock tube.	6	L1	
	b)	Derive an expression for equivalent force constant for 2 springs in series. Mention the expression for time period of its oscillations.	5	L2	CO1
	c)	In Reddy shock tube experiment, it was found that, the time taken to travel between the two sensors is 195 μ s. If the distance between the two sensors is 100 mm, find the Mach number. (Velocity of sound is 334 m/s)	4	L3	
	100 sept 1000	Module – 2 (Elastic Properties of Materials)			
3.	a)	Define torsion of a body. Derive an expression for couple per unit	6	L2	
	b)	State and explain Poisson's ratio. Discuss the limiting values of σ .	5	L1	CO2
-	c)	Calculate the force required to produce an extension of 1 mm in steel wire of length 2 meters and diameter 1mm.(Given : Young's modulus for steel $Y = 2 \times 10^{11} \text{ N/m}^2$)	4	L3	2000
	1504				
		Define Young's modulus and Derive the relation between Y , $\eta \& \sigma$.	6	L2	4
4.	a) b)	What is a beam? Give the different types of beams. Mention the	5	L1	co2
	c)	applications of beams in engineering. Calculate the angular twist of a wire of length 0.3 m, and radius of 0.2×10^{-3} m when torque of 5×10^{-4} Nm is applied. Rigidity modulus of the material is 8×10^{10} N/m ² .		L3	

CO1: Able to classify various types of oscillations and their implications, the role of Shock waves in

various fields Engineering and Technical fields.

CO2: Recognize the elastic properties of materials for engineering applications.

Sapthagiri College of Engineering 14/5, Chikkasandra, Hesaraghatta Main Road Bengaluru - 560 057

IJ	S	N				II	\Box
----	---	---	--	--	--	----	--------

Department of Physics Sapthagiri College of Engineering Internal Assessment - III

Subject: Engineering Physics Semester: 2 (EC/ME/BT/CV)

Duration: 1½ hour (Time: 10.45am to 12.15pm)

Subject Code: 18PHY22

Max Marks: 30 Date: 10/06/2019

<u>Physical constants:</u> Velocity of light, $c = 3x10^8 \text{ ms}^{-1}$, Planck's constant, $h = 6.625x10^{-34} \text{ JS}$,

Mass of electron, $m = 9.1x10^{-31}$ kg, Boltzmann's constant, $k = 1.38x10^{-23}$ JK⁻¹, Avogadro

Number, $N_A = 6.023x10^{26}/kmole$, Charge of electron, $e = 1.6x10^{-19}$ C.

Answer any two full questions, choosing one from each module

	uestio umbe		inouu,	ie	
1	. a	Modulo 4	Marl	s BL	T CO'
	b	Obtain an expression for energy density of radiation under thermal equilibrium condition in terms of Einstein's Coefficients.	6	6 L2	
	c	diagram.	5	L1	
		The Average output power of a laser source emitting laser beam of wavelength 6328 Å is 5 mW. Find the number of photons emitted per second by the laser source.	4	L3	CO4
2.	a)	Describe the construction of GO is			
	b)	Describe the construction of CO ₂ laser and explain its working with the help of energy level diagram. Derive Clausius-Mossotti equation.	6	L1	
	c)	If NaCl crystal is subjected to a line of		L2	1
		If NaCl crystal is subjected to an electric field of 1000 V/m and the resulting polarization is 4.3x10 ⁻⁸ C/m ² , calculate the dielectric constant of NaCl.		L3	CO4
3.	a)	Module – 5			
٠.	b)	Discuss two success of Quantum free electron theory.	6	T 1	T
	0)	Derive an Expression for electrical conductivity of intrinsic semiconductor.		L1	
	c)	Find the temperature at which there: 100	5	L2	CO5
		Find the temperature at which there is 1% probability that a state with an energy 0.5 eV above the Fermi energy is occupied.		L3	COS
4.	a)	What is Hall Effect? Derive an expression for Hall Voltage.			
	b)	Define Fermi energy. Obtain an expression for Fermi energy at zero Kelvin.	6	L1 L2	
			5	L1 L2	CO5
		The resistivity of intrinsic germanium at 27^{0} C is equal to 0.47 Ω m. Assuming electron and hole mobilities as 0.38 and 0.18 m ² V ⁻¹ s ⁻¹ , Calculate the intrinsic carrier density.	4	L3	COS

CO4: Apprehend theoretical background of laser, construction and working of different types of laser and its applications in different fields

CO5: Understand various electrical and thermal properties of materials like conductors, semiconductors and dielectrics using different theoretical models. ____***

Principal

Sapthagiri College of Engineering 14/5, Chikkasandra, Hesaraghatta Main Road Bengaluru - 560 057

U	S	N		1			-

Department of Physics Sapthagiri College of Engineering Internal Assessment - II

Subject: Engineering Physics

Subject Code: 18PHY22 Semester: 2(ECE/ME/BT/CV) Max Marks: 30

Duration: 1½ hour (Time: 10.45am to 12.15pm)

Date:17/05/2019

NOTE: 1. Answer any two full questions, choosing one from each part.

Ques num		Questions	Marks	BLT	cors
	į.	Part-A			
1.	a)	Explain the concept of divergence with its physical significance & Mention the time varying and static field Maxwell's equations.	6	LI	
	b)	Obtain an expression for numerical aperture of an optical fiber in terms of refractive indices of core and cladding.	5	L2	соз
	¢)	The attenuation of light in an optical fiber is estimated at 2.2 dB/km. What fractional intensity remains after 2 km & 6 km.	4	L3	
l,		OR			
2.	a)	Explain the different types of optical fibers with suitable diagrams.	6	L1	
	b)	State and derive Gauss divergence theorem.	5	L2	COS
	(e)	Given $\vec{A} = (3x^2 + y + az)\hat{a}_x + (bx - 5y^3 - 2z)\hat{a}_y + (2x + cy + 3z^2)\hat{a}_z$. For what values of a, b & c the vector is irrotational.	4	L3	003
		Part-B			
3.	a)	What are electromagnetic waves? Derive the differential wave equation for electromagnetic waves using Maxwell's equation.	6	L2	
	b)	State and Explain Heisenberg's uncertainty principle. Show that electrons cannot reside inside the nucleus using this principle.	5	L1	CO4
Į.	e)	Calculate the wavelength associated with an electron raised through a potential difference of 2 kV.	4	L3	
	11.	OR			
4,	a)	Explain the transverse nature of electromagnetic waves. Mention the types of polarization of electromagnetic waves.	6	L2	
49 50	b)	Set up one dimensional time independent Schrodinger's wave equation.	5	L1	CO4
	e)	Compute the first three permitted energy values for an electron in a box of width 4 A°.	4	L3	

Able to realize the interrelation between time varying electric field and magnetic field, the transverse nature of the EM waves and their role in optical fiber communication.

CO4: Able to compute Eigen values, Eigen functions of a particles using Time independent 1-D Schrodinger's wave equation and apprehend theoretical background of different types of laser and its applications in various fields.

> Sapthagiri College of Engineering 1415, Chikkasandra, Hesaraghatta Main Road Bengaluru - 560 057